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Abstract

We describe an interface between the Coq proof assistant and the Maple
symbolic computation system, which mainly consists in importing, in Coq,
Maple computations regarding algebraic expressions over fields. These can
either be pure computations, which do not require any validation, or com-
putations used during proofs, which must be proved (to be correct) within
Coq. These correctness proofs are completed automatically thanks to the
tactic Field, which deals with equalities over fields. This tactic, which
may generate side conditions (regarding the denominators) that must be
proved by the user, has been implemented in a reflexive way, which ensures
both efficiency and certification. The implementation of this interface is
quite light and can be very easily extended to get other Maple functions (in
addition to the four functions we have imported and used in the examples
given here).

1. Introduction

Computer Algebra and Theorem Proving are two distinct domains of theoretical
Computer Science, which are quite wide and involved in many distinct appli-
cations. These two domains have their own scientific communities, which seem
to be also rather distinct from each other and have little interaction. Actually,
Computer Algebra focuses on (symbolic) computation whereas Theorem Proving
focuses on validation and, basically, that does not seem to be related. However,
over the last 5 years, the situation has begun to change and some people are in-
creasingly interested in making these two worlds communicate. The fact is that
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Computer Algebra and Theorem Proving are quite complementary, especially
regarding their respective weak points. If we consider a Computer Algebra Sys-
tem (CAS), there is no notion of consistency (we are only interested in the power
of computation) and it is quite trivial to perform false computations, which ob-
viously have no sense. For example, in the Maple system [8], if we consider the
equation a = 0, we can derive directly that 1 = 0 asking for the division and the
simplification by a of the equation. Here, the first equation is valid, but we can-
not divide it by a because a is equal to 0. Maple does not make any remark and
performs the division. Maple supposes that the user knows what he/she is doing
and in this trivial example, it seems quite clear that we could have been a little
more careful before asking for this division by 0. However, in some more signif-
icant examples, this kind of false computations could very easily occur without
being noticed by the user and obtaining a wrong result could have more serious
consequences. Of course, this is not specific to Maple and could apply to many
other CASs. In such a case (as well as in many others), Deduction Systems (DSs)
can clearly bring a solution. For example, in the Coq proof assistant [24], it is
impossible to derive 1 = 0 from a = 0. Indeed, the division by a is performed
by means of a lemma which makes appear explicitely the side condition over a.
Thus, ¢ must not be equal to 0 and this cannot be proved.

Conversely, efficient computations are, in general, rather difficult to perform in
a proof system. In a DS, it is as easy to crash the system during a big computation
as it was to derive false propositions in a CAS. As an example, still in Coq, if
we try to compute 100 x 1000, we can notice that it is quite time-consuming
(about 20s on a Sun UltraSPARC 450 MHz with a native compiled version of
Coq), whereas the computation of 1000 x 1000 saturates the stack. Again, this
is not specific to Coq and this could apply to some other DSs!. In the same
way as for the previous wrong derivation, CASs can bring a solution to these
problematic computations. For example, Maple realizes these two computations
immediately (less than a second) on the same machine.

All these examples emphasize that, as said previously, CASs are dedicated
to computation whereas DSs are dedicated to validation. But, these examples
also show that these domains are complementary because computation (resp.
validation) is clearly a weak point of DSs (resp. CASs). So, there is a real interest
to be gained in making them interact. This could be done in several ways: to
import validation in CASs, to import computation in DSs or, more ambitiously,
to build a unique system with both (efficient) computation and validation. In
this paper, we focus on the second way, i.e. to import computation in DSs, and
we want to share our experience of an interface between Coq and Maple. This
idea of interface was proposed some time after the design of the tactic Field [12]
for Coq, which can automatically prove equalities over fields. Beyond the fact

! Actually, in Coq and in most of DSs, there exist more efficient numbers (based on a binary
coding) which can be seen as dedicated to computations. However, the recursion scheme is
not the usual one and the proofs are less natural with these numbers (which are not really
appropriate for reasoning).
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that this tactic has considerably improved the possibility of Computer Algebra
development in Coq, it has also made it possible to import computations from
some external CASs (not only Maple) and to validate them automatically, so
that it is almost transparent for the user, who has the impression of performing
only a computation. Thus, with this interface, we can use, in Coq, some Maple
functions regarding expressions over fields and the computations coming from
these functions are systematically proved (to be correct) by the tactic Field.
This work presents a concrete realization and thus contributes to showing the
effectiveness of general methods describing the interaction between CASs and
DSs (see [4], for example). It should be noted that up to now, in this specific
context of CAS/DS, very few interfaces have been designed or at least, formally
presented in publications. Compared to some of these interfaces, the main novelty
of this paper consists in providing the corresponding automation in the DS to
automatically prove the external computations from the CAS. Indeed, we claim
that such a method is worth being applied in practice only if the automation (at
least partial) to verify the correctness of the imported computations has been
also developed.

2. The computation/proof paradigm
2.1. Computation vs proof

In Mathematics, there are two distinct traditions: an operational tradition and
a denotational tradition. For example, if we want to show that 2 + 2 = 4, the
question does not seem to be the same according to the two traditions. In an
operational way, the previous equation is actually not symmetric and this means
that we have to compute (or reduce) 2 + 2 to 4. In a denotational way, the
equation is really symmetric and this is a proposition that we have to prove
using the axioms of Arithmetics. Historically, Mathematics of Antiquity, coming
from Egyptian, Babylonian or Greek knowledge, was centered around opera-
tional methods and, little by little, these methods have been replaced by the
denotational view of Modern Mathematics. However, nowadays, with the grow-
ing development of Computer Science, we can no longer ignore the operational
tradition.

Thus, in a modern mathematical language, we must be able to show that
2 4+ 2 = 4 but also to transform the expression 2 + 2 into the expression 4. So,
this language must not only provide deduction rules, but also computation rules,
which are called rewriting rules. One of the simplest rewriting rules, which is, in
general, implicitly used, is the g-reduction, which simply consists in replacing
the formal arguments by their effective arguments. For example, if we apply the
function z,y — x + y to 3 and 4, we obtain the expression (z,y — = + y)(3,4),
which is computed by replacing x by 3 and y by 4 to get the expression 3 + 4.
If we want to further reduce the expression 3 + 4, we need other computation
rules (regarding the symbol +, in particular). Currently, one of the most inter-
esting theoretical frameworks which allows us to handle both deductions and
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computations is certainly the deduction modulo [13]. In this formalism, thanks
to a congruence on propositions, deductions (the undecidable part) and compu-
tations (the decidable part) are clearly separated in a clean way. However, as far
as the authors are aware, no proof system, based on such a theory, has yet been
implemented. In the current other proof systems, the user has to apply explicit
computation rules when building proofs and it is more difficult to distinguish
computations from deductions.

2.2. Importing computation

In general, especially compared to programming languages, computations are a
weak point of proof systems, even if, in these tools, computations are realized
considerably faster than deduction checkings, i.e. means which allow us to build
a proof tree structure w.r.t. the underlying logic. This can be explained by the
fact that proof systems use essentially a pure functional specification language.
In particular, it is impossible to handle imperative features like, for example,
mutable objects or exceptions, which can be of great help when writing effi-
cient code. Moreover, to ensure consistency, proof systems must only deal with
functions which terminate. In some systems, the termination argument must be
explicitly given (as in PVS [19]) and in some others, the syntactical class of func-
tions are constrained in order to get the proof termination automatically (as in
Coq [24]). In every case, the user is a bit limited in the way of writing his/her
code in a language which is clearly not Turing-complete. In the same way, it is
quite difficult to handle partial functions, which can only be simulated.

Actually, all the previous features express that we cannot add any computation
rule to a logic system. We have to take care of the consistency of the system
because these rules are used not only for pure computations but also in proofs.
However, this is a real limitation because we may want to perform computations
outside a proof and, in this case, there is no special need for restriction regarding
the computation rules. To do so, a natural idea is to call external functions (w.r.t.
the proof system) which are only used for pure (i.e. not in a proof) and local
computations. In this case, the proof system is only interested in the result and
not in the function which makes the computation.

This method is quite general and the proof system can use functions from any
external tool. Moreover, the proof system only needs a very superficial knowledge
of the external tool in order to build the interface. In particular, this can be
applied to Computer Algebra which can provide very efficient procedures to any
proof system whereas it is quite useless, for the proof system developers, to know
how these procedures actually work. Thus, this principle can easily build bridges
between Theorem Proving and other very different domains, which may, in turn,
lead to a new computational behavior.
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2.3. Validating computation

The previous method is a general idea to perform external computations in a
proof system but this cannot be used inside proofs. As said previously, to extend
these computations to proofs, we have to ensure that they do not break the
consistency of the proof system. To do so, we have to prove that every external
computation is correct w.r.t. the computation and deduction rules of the proof
system. This idea is currently well known and for example, in the context of CA,
|4] essentially proposes two approaches regarding this process of validation: a be-
lieving approach, where the correctness of the external computation is assumed,
i.e. added as an axiom, and a skeptical approach, where we have to establish the
correctness of the computation. Actually, there is also a third approach, called
the autarkic approach, where the proof assistant makes the computation on its
own. This last approach will not be discussed in this paper since we want to
import computations. As claimed in [3], the believing approach is unsatisfac-
tory because CASs may have some bugs but especially, as can be seen in the
introduction, some necessary side conditions may not be required. Thus, we will
have a clearly skeptical view in this paper. More precisely, let us consider the
following sequent:

T+ P(t)

where I is a context of hypotheses, P is a predicate and t is a term. If we want
to transform ¢ using an external function fe, we have to use the contextual rule
of the equational logic, i.e.:

THt=t T+ P (=com)
T'FP(t) — Cont

where = is an equality (it could be either the syntactical equality, also called
Leibniz’s equality, or more generally a setoid equality) and ¢’ = fey (). Once this
rule has been applied, we can go on to the proof with the sequent I' - P(¢'),
but we have also to prove that ¢ = #/, i.e. t = feu(t), which is the required
validation. To do so, there are two alternatives. Either there is a function of the
proof system, called gy, s.t. we can obtain, by computation gp¢(t) = fext(t) and
conclude using the reflexivity axiom of the equality, but in this case, the use of
fext is completely useless because we can use g directly to transform ¢ (as said
previously, we are not interested in autarkic computations in this paper). Or
there is no function of the proof system which is extensionally equal to fe and
we have to prove ¢t = t' using the deduction rules. As already mentioned, the first
alternative will generally not occur because the proof system will call external
functions which do not already belong to its environment. The second option
is more realistic and shows very clearly the duality computation/proof. Indeed,
here, we make an external computation with fe.(¢) and also a corresponding
proof ¢ = fex(2).

Regarding the proof of ¢ = #', it would be particularly interesting if it could
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be completed automatically, even partially, so that the user really has the im-
pression of making a computation using an external function. However, even if
this proposition cannot be automatically proved, it is always worth calling the
external function which returns ¢’ because, in every case, we use the external
tool as an oracle which provides a result.

2.4. Application to Coq and Maple

As said previously, even if it is easier, in a proof system, to verify that a com-
putation is correct than to make the computation itself, it is quite important to
automate this verification so that the user only sees the computation side of this
paradigm. Thus, this restricts the application of Theorem Proving to domains
which are decidable or at least partially decidable. Here, in the context of the Coq
proof assistant [24] (a direct descendent of LCF, one of the first proof systems),
we have designed a strategy (or a tactic), called Field [12], for reasons which
will be explained in section 3, which automatically proves equalities between
algebraic expressions over a field. As the problem is not decidable in general,
the tactic generates some conditions (typically that some expressions occurring
in inverses must not be equal to 0), that the user must prove manually. Even
though it was not one of the initial goals, this tactic has built quite a direct
bridge toward Computer Algebra Systems, which can perform various symbolic
computations over algebraic expressions, because it is now possible to call any
computation procedure of a CAS to get a result and to verify the correctness of
this result with this new tactic. As a Computer Algebra System, we have chosen
Maple [8] because, beyond the fact that Maple is both popular and easy to use, at
least for a beginner, it provides all the functions we would like to have in Coq and
it allows us to implement very quickly a light interface between the two systems
(see section 4). We will see that this cooperation between Coq and Maple makes
usual but also certified operations over algebraic expressions possible very easily
(the list of available operations can be extended quite quickly by the user) and
opens up, as a bonus, new possibilities regarding the automation of Coq in the
domain of Computer Algebra.

3. Presentation of the tactic Field

Before describing the interface between Coq and Maple, let us focus on the tactic
Field, which has made it possible to increase the automation of Coq in the
domain of Computer Algebra.

3.1. History and motivations

Initially, the tactic Field [12] was designed to automate many small parts of
proofs over the real numbers using the field structure. These parts of proofs
were small in the sense that they were quite trivial when considered from the
usual and informal mathematical point of view, but they turned out to be quite
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tedious to build in a formal proof system. In particular, the idea was to deal
with the /4 proofs? involved in the theorems about limits and derivatives. As a
typical example, let us consider the derivative of the addition: given two functions
f and g, as well as their derivatives at zo, denoted f'(zo) and ¢'(xy) (we assume
that these two functions are both side differentiable at z,). By definition, the
two derivatives are expressed as follows:

T—To T — xo

Using the theorem of limit addition, we obtain directly:

(f(fc) — flzo) | 9(@) — 9($0)>

I — X r — g

f'(2o) + ¢'(20) = lim

T—T0

Using the limit definition®, we have, for every domain D of R:

Ve >0, 30 > 0, Vo € D\xy, if |z — z9| < § then

f(xa): : isxo) + g(xx) : i(()xo) . (f'(l‘o) + gl(xo))‘ <e

Finally, we must show the following equality:

f(x) = f(wo) n 9(x) —g(xo)  f(x) +g(x) — (f(20) + g(w0))

r — X r — Xy r — 2

The equality above is quite trivial but the formal proof requires much more
work than expected. Indeed, we must reduce the left-hand side with the same
denominator and then we can show the equality over the numerators using dis-
tributivity, commutativity, etc. In Coq, 10 rewritings are needed to complete this
proof.

Initially, the tactic Field was implemented to deal with that kind of proofs
over the real numbers. Next, the tactic was generalized to handle every field (not

only R, but also C for example). The tactic is currently available in the latest
version of Coq (V7.3).

2¢ /6 proofs are proofs using the explicit definition of limit, i.e. of the form: Ve > 0.35....

3Here, we have to get to the £/§ level even if it seems sufficient to perform the algebraic
manipulations in the argument of the limit because in the formalization made in Coq, the
x occurring in the limit is an abstract variable and it is not allowed to rewrite under an
abstraction.
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3.2. Algorithm

The algorithm is based on the fact that there is already a decision procedure for
Abelian rings in the Coq system (tactic Ring [5; 6]). So, the idea is to minimize
the simplification operations in order to be plugged into the decision procedure
on Abelian rings as soon as possible. This essentially means that we simply have
to get rid of all the inverses involved in the equality to be solved.

To do so, we propose the following steps:

1. To transform the expressions z — y into = + (—y) and z/y into z % 1/y.

2. To look for the inverses involved in the equality in order to build a product of
these inverses.

3. To perform a full distribution in the left-hand side and the right-hand side of the
equality, except in the inverses.

4. To associate to the right each monomial, except in the inverses.

5. To multiply the left-hand side and the right-hand side of the equality by the
product of inverses (built in step 2), generating the side condition that all the
inverses must not be equal to 0.

6. To distribute only the product of inverses on the sum of monomials in the left-
hand and right-hand side without re-associating to the right.

7. To simplify the inverses in the monomials using the field rule zx1/z =1, if x # 0
and performing permutations of the monomial components if necessary, that is to
say if there are some inverses remaining and that the field rule cannot be applied®.

8. To loop to step 2 if there are some inverses remaining.

The first step allows us to limit the operations we have to deal with (we
get rid of the binary minus and the division which are not primitive in the
field definition) before reducing the problem to the ring level. Step 4 is clearly
not necessary, but rather more efficient, because this avoids a double recursive
call in the functions which handle these expressions. The last step, which may
involve further iterations, is justified by the possibility of having other inverses
in the inverses. After all these steps, we obtain an expression without inverses
and we only have to call the decision procedure for Abelian rings to conclude.
The correctness and the complexity of this algorithm will be discussed later in
subsection 3.4.

3.3. A complete example

Let us consider a small example of the evaluation of the previous algorithm
where it is needed to make a recursive call. Given z, y and z, three variables
over a field, we propose to show the following equality under the hypotheses that

x#0,y#0and z #0:

‘Here, we do not have to verify that x # 0, because this condition has already been
generated during the step of multiplication by the product of all the inverses.
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x z
xe—g)=1-1

z
First, we transform the binary minus and the divisions

1
We build the product of inverses, we call p:

1
1+(—z)*§
p=x*((y*2)*y)

We perform a full distribution in the left-hand and right-hand sides of the
equality, except in the inverses:

1 1 1 1
— x4+ —*((—1)*z* ) =14+ (1) *z%—

We associate to the right each monomial, except in the inverses
1 1 1 1

—xx 4+ —*((—=1) % (z % =) =14+ (=1) * (2% —)

Y

We multiply the left-hand side and the right-hand side of the equality by p
generating a correctness condition:

(e GrorLa(D)
w((y* 1) xy) = (1+(=1) =
With?:*.((y*%)*y);é(].

We distribute this product on the monomials without re-associating to the
right:

sy ) xy)x(Gra)+ox () *y)* (g (F) * (@ 1)) =
() xy)xLtax((y=;)xy)*((=1) * (2% ))

We simplify the inverses performing permutations if necessary

(s D) eyratys((-1)sa) = o (g ) wy) s 1+ a5y (1)

Some inverses are remaining (two occurrences of %) and we have to apply

the previous steps again. The new product of inverses, which we call p', is the
following:
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Here, each member of the equality is already fully distributed and there is no
need to apply step 3. Next, we associate to the right each monomial:

v Cox (s ) +yx (1) ea) = o e (ys (G (y 1) + 2% (g (1)

We multiply both sides of the equality by p’ generating another side condition:

2xlys (Cxlyn) +yx (1) 5m)) =25 (0x (ye ( x (ye ) 4o (ys (-1))

with z # 0.
We distribute p’ on the monomials without re-associating to the right:

2 (e #(ya) 4y ((~1) #2) = (e (e (g D) 2 (o (y (1))

We simplify the inverses:

y*(yra)+zx(yx (1) xz)) =z (y*(yx1)) +2x @ (y*(=1)))

Thus, we obtain an equality over an Abelian ring structure, which can be
solved calling the corresponding decision procedure. We have also two side con-
ditions (there are as many conditions as recursive calls of the algorithm), p # 0
and p’ # 0, which have to be proved manually (more precisely, they are not
proved automatically by the algorithm).

3.4. Implementation

An originality of the tactic Field is that it has been implemented in a reflex-
ive way. This particular coding ensures both efficiency and soundness. To fully
understand how this is possible, let us briefly recall what a reflection is.

To code a tactic in a formal proof system, there are globally two possible
options. An explicit coding using rewriting or a reflexive coding using reduction.
An explicit coding, also called LCF’s approach, may be very inefficient due to the
use of rewriting, which may be quite time-consuming but also space-consuming
in some systems based on Curry-Howard’s isomorphism®, where proofs are M-
terms, like in Coq, Lego [21] or Alfa [11], for example. A reflexive coding is an
alternative method, which is quite satisfactory according to these two criteria.
Indeed, rewritings are replaced by more efficient reduction steps and proof term
size is the same as the size of the goals to be proved.

5This isomorphism consists in the fact that it is possible to build a bijection between
propositions and types of a typed A-calculus, which implies a second bijection between proofs
and A-terms.
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The reflection principle is the following: given a language of concrete terms
(typically any type of the system), say C, and a language of abstract terms
(typically an inductive type), say A. As it is not possible, in general, to handle the
terms of C' as we would like to (we may not be able to perform pattern-matching,
for example), the idea is to reflect a part of C into the language A, which is
supposed to be isomorphic to this part. The first step, called metaification®,
consists in converting terms of C into terms of A. More precisely, this consists,
for a term ¢ of C, in building the term @ of A such that [a], = ¢, where [.] is the
interpretation function from A to C' (which can be coded in the system), v is the
canonical map of the parts of C' which are not reflected and = is the syntactical
equality.

Next, we can handle the converted terms of A and we can write some transfor-
mation functions on A. To use these functions, we only have to prove correctness
lemmas, which, for example, given a transformation function ¢ from A to A, have
the following form: Va € A.[¢(a)], = [a],- In particular, this point means that,
in the reflection process, the tactic and its correctness proof cannot be dissoci-
ated, they are built simultaneously.

Finally, once this lemma has been applied, we only have to fully reduce the
expression in order to perform the transformation on the abstract term of A and
to re-obtain a concrete term of C.

The situation can be summarized by figure 1 and here is a small example to
better understand how this general scheme of reflection actually works:

Metaification
C A
Explicit ;
coding Reflection ©
C'« A

[

Figure 1: Reflection principle.

EXAMPLE 3.1 (HANDLING PROPOSITIONS): The probably best example of ob-
jects which can only be handled at the meta-logic level are basic propositions. For

6This word was coined by Samuel Boutin [6], but, in the literature, this step is also called
quotation or reification.
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instance, let us consider the strateqy which replaces ® A T with ®, where ® is a
proposition and T is the universally true proposition. To write such a strategy
according to a reflective approach consists in reflecting a part of propositions,
actually N as well as T, using a concrete type (an inductive type). Let us call
T this concrete type, which is made of three constructors: and corresponding to
A, true to T and a last one to variables (these variables are mapped to proposi-
tions which are not reflected, i.e. propositions formed from V, = , etc). Now, the
strategqy can be written as a function, we call S, over terms of T'; this is a quite
trivial recursive function working by usual pattern-matching. To be applied, this
strategy needs its correctness lemma (that is one of the main points of reflection’s
principle: the correctness of the strategy is established during the implementation
process), which is:
vt € T.[S@)]o = [t]s

where [.] is the interpretation function of abstracted propositions of T into
usual propositions (as S, this is also a quite trivial recursive function working by
usual pattern-matching) and v is the canonical map of the parts which have not
been reflected during the metaification pass. Here, since we use equality between
propositions, we must remark that we need an extensionality axiom to prove this
lemma.

If we consider the expression ® A T = &, where ® is an arbitrary compli-
cated proposition, let us see how to apply the previous strateqy. First, we have
to metaified the expression (this is the only pass which requires to switch to the
meta-logic level) and we obtain:

[and(p, true)]ip,ey = @
Next, we apply the correctness lemma of S (a simple rewriting):
[S(and(p, true))](p,e) = @

We can apply the definition of S:

[pliw,2) = @

Finally, we apply the definition of [.] to get ® = ®.

For further information regarding the use of reflection, see [5; 6; 15; 22; 18|.

Thus, with this very specific implementation, the proofs using Field can be
verified faster using only reductions and are smaller. Moreover, this reflexive
coding ensures the correctness of the tactic and the built procedure is then
certified. It is important to realize how this last point is fundamental because,
with a direct coding, it is not even possible to state the correctness inside the
proof system (indeed, this is a meta-statement which can only be verified outside
the system). Here, we provide an efficient but also valid tactic. For further details
regarding the correctness lemmas and the complexity of Field, see [12].
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4. Interfacing Coq and Maple
4.1. Method

According to the paradigm described in section 2, we have imported, into Coq,
computations from Maple to build terms, in definitions for example, but also
to be used in proofs of propositions, called goals. Pure computations, i.e. not
used in proofs, can be realized with the following expression (we will see some
examples in section 5):

Eval < Maple function > in < Coq term >

which simply consists in applying the Maple function to the Coq term and
returning a new Coq term. Obviously, there is interfacing work to do between
Coq terms and Maple terms, which will be described in subsection 4.2. As said
in section 2, computations of this kind do not require any verification from Coq
(that is why they are called pure computations) and no tactic is called to build
any proof (even if the Maple function does not do what it was coded for, it cannot
break the consistency of Coq).

Computations which occur in proofs are called with the usual syntax of Coq’s
tactics as follows:

< Maple function > < Coq term >.

where we assume that we are in the proof editing mode and that the Coq term
has an occurrence in the goal we try to prove. If we call f, the Maple function, and
t, the Coq term, the effect of this "Maple tactic" on a goal of the form I' - P(t) is
to generate a subgoal I' - P(f(¢)), the user has to complete next, and a subgoal
I'Ft = f(t), to verify, as seen in section 2, that the Maple function has given
a correct result. The latter subgoal is automatically solved by the application of
the tactic Field since, as said in subsection 2.4, we deal with Maple functions
which handle algebraic expressions over fields. As seen in section 3, applying
Field may generate side conditions (typically, that some expressions must not
be equal to 0) and, after applying this Maple tactic, the user may have to prove
more than one subgoal. Figure 2 gives a global view of how Maple computations
are used in Coq proofs.

The Maple functions dealing with algebraic expressions over fields which have
been exported are the following (we also give their informal and brief semantics
coming from Maple’s documentation):

Maple function Action

simplify Apply simplification rules to an expression
factor Factorize a multivariate polynomial
expand Expand an expression

normal Normalize a rational expression
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Maple Coq

I+ P(#)
t

v

' P(t) F't=1¢

Field

4

<side conditions>

Interface

Figure 2: Using Maple computations in Coq proofs.

In section 5, we will see some examples which give a more precise idea regarding
the behavior of these functions, but for further information, the reader can refer
to the Maple reference manual [8]. Syntactically, these functions are imported in
Coq with the same names where the first character has been capitalized giving
Simplify, Factor, etc. Currently, we only have functions with an arity of 1 (we
will see in subsection 4.2 that adding other functions is quite direct and very
easy for the user), but there is no specific difficulty in extending this interface
to functions with higher arities.

4.2. Implementation

Implementing the interface between Coq and Maple has been done quite quickly
and almost for free, essentially due to the reflexive coding of the tactic Field.
When we want to transform a Coq term ¢ with a Maple function, we use the
reflexive structure of field which has been created for Field and we perform a
metaification (see figure 1) to get a term ¢,,s. With this new term ¢,,s, which is
only an algebraic expression over a field, we build another concrete term tmaple,
expressed in the Maple syntax and which is completely isomorphic to ¢,ps. Next,
we can call the corresponding Maple function to obtain a term #), ., which can

be directly transformed into a term ¢, of the reflexive structure. Finally, the



D. Delahaye & M. Mayero: A Maple mode for Coq 15

'bs 18 interpreted by the function [.] of figure 1 to re-obtain a Coq term #', which
can be used either as the result of a pure computation or in a proof.

To use the previous result, i.e. ¢’ coming from ¢, in a proof, we simply make a
cut of the equality ¢ = ' and we rewrite ¢ into ¢’ in the goal where ¢ occurs. The
equality ¢t = t' is then proved by Field. This is done by the following short Coq
script:

Replace t with t’;[Idtacl|Field].

where the tactic Replace makes the cut of t=t’ (we obtain two subgoals)
to rewrite t into t’ in the main subgoal, and the tactic Idtac leaves the goal
unchanged. The notation Tac; [Tac;|...|Tac,] means that we apply the tactic
Tac to the current goal, Tac; to the first subgoal, ..., and Tac,, to the nth subgoal.
Here, the first subgoal is the initial goal where t has been replaced by t’, which
is left identical by Idtac (this is the expected subgoal, which must be completed
by the user afterwards), and the second subgoal is the equality t=t’, which is
automatically proved by Field.

The whole implementation has been realized in a very light way. The interface
between Coq and Maple does not require a specific architecture and, in particular,
there is no transfer protocol, no use of sockets or other sophisticated communi-
cation systems, but only a simple pipe created by Coq for each call of a Maple
function. Of course, neither of the two systems has any information regarding
the state of the other one, but this is quite useless and when Maple is called,
there is no need for a specific context. Incidentally,we can also notice that the
roles of the two tools are asymmetric. Indeed, Coq is in charge and deals with
the interface. Maple is only called when Coq needs a computation, but Maple
cannot call Coq to verify a result in its own context.

The implementation of this interface is available as the Coq contribution
Chalmers/MapleMode, which can be found on the Coq web site: http://coq.inria.fr.
As just said, the implementation is quite light and the corresponding code is very
short with about 300 lines of ML. The contribution contains also some examples
of use for each imported Maple function.

5. Examples

Here, we give some examples of the new tactics Simplify, Factor, Expand and
Normal, now available in Coq. As seen previously, these tactics call the corre-
sponding Maple functions and we propose some examples where they can be used
either to prove a goal or only to compute a result. These examples are rather
small in order to show quite clearly how the new corresponding tactics work and
in particular, to understand when some side conditions are generated. A more
complete and realistic example can be found in appendix A.

To use Maple in Coq, we have to import the specific module Maple (the in-
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terface) with the Coq command Require. If Maple is available on the machine
where Coq is running then the following heading appears:

Welcome to Coq 7.3 (May 2002)

Coq < Require Maple.

[Loading ML file maple.cmo ...

Coq is now powered by Maple

[Maple V Release 5 (Chalmers Tekniska Hogskola)]

N~/ v
I\ [/1_. ====> <0___,,
\ MAPLE / ====> \Vv/
< > //

|
done]

The examples we give are over the field of real numbers. We suppose that the
module Reals has been imported, which allows us to use the whole real number
library and, in particular, to call the tactic Field instantiated for this field. This
module has a specific syntax and the real expressions are parenthesized by ©°.
The opposite of z, the inverse of x and = # y are respectively noted -x, /x
and x<>y. Additionally, there are also a binary minus and a division, which are
represented by - and /.

5.1. Maple tactics
5.1.1. Simplify

We want to prove the following lemma, we call simp1, stating that for every real
number z and y, if z # 0 and y # 0 then:
x
(_+Q) zy—(rox+yy)+1>0
Yy
After having entered the goal and assumed the hypotheses (tactic Intros),
we obtain the following goal:

simpl < Intros.

1 subgoal
x : R
y : R
H: Clx<> O((

HO : “‘y <> 0¢¢

CC(x/yry/x) *kxxy - (xkx+y*y)+1 > 0¢¢
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The most direct way of completing this goal is to simplify the left-hand side

term (7 + %) z.y — (z.x + y.y) + 1 with the new tactic Simplify as follows:

simpl < Simplify ©‘(x/y+y/x)*x*y- (x*x+y*y)+1¢¢.

2 subgoals
x : R
y : R
H (‘X <> O((

HO : “‘y <> 0¢¢

¢¢1 > OC[

subgoal 2 is:
((y*x <> O((

The tactic Simplify calls the Maple function simplify to get the simplified
term 1 and replaces it in the goal to obtain 1 > 0. We can notice that another
subgoal appears. This subgoal is generated by applying the tactic Field, which is
called to validate the previous replacement by proving the equality between the
initial and simplified terms, i.e. (% +%) 2.y—(z.z+y.y)+1 = 1. This automatic
proof creates an additional goal requiring that the denominator product must
not be equal to 0, that is to say y Xz # 0. These two subgoals are then completed

by very simple tactics on real numbers, respectively Sup0 and SplitRmult.

5.1.2. Factor

Regarding the tactic Factor, we can give the following example in which we

want to factorize the term:
a® + 3a%b + 3ab® + b3

factl < Intros.

1 subgoal
a:R
b : R

H: ““a+b > 0¢¢

¢ Caxaka+3kaxaxb+3xaxbxb+bxb*b > 0¢°¢

factl < Factor ¢‘axaxat3*axaxb+3*axbxb+bxbxb‘‘.

1 subgoal
a:R
b : R
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¢¢(atb)*(a+b)*(atb) > 0¢¢

5.1.3. Expand
For the tactic Expand, let us consider the following example in which we want
to expand the term:

(a —b)(a+0b)

expdl < Intros.
1 subgoal

a: R
b:R
H: ““a <> b*¢¢

“¢(a-b)*(atb) <> 0¢¢

expdl < Expand ¢‘(a-b)*(at+b) ‘.

1 subgoal
a: R
b:R

‘faxa+ -(bxb) <> 0¢°¢

We can notice that the tactic Expand (actually, the Maple function expand)
expands and also simplifies the expression.

5.1.4. Normal

We may use the tactic Normal in the following example in which we want to
normalize the term:

.’132 y2

(z—y)? (z—y)?

In Maple, the normal function provides a basic form of simplification. It rec-
ognizes those expressions equal to zero which lie in the domain of “rational
functions”. This includes any expression constructed from sums, products and
integer powers of integers and variables. The expression is converted into the
“factored normal form”. This is the form numerator/denominator, where the
numerator and denominator are relatively prime polynomials with integer coef-
ficients. Thus, in Coq, let us try to prove that if x — y # 0 then the previous

expression is normalized into ;%*Z:
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norml < Intros.

1 subgoal
x : R
y : R
H : ((X_y <> O((

Coxrx/ ((x-y) * (x-y)) -y*y/ ((x-y) *(x-y)) == (x+y)/(x-y) ‘¢

norml < Normal ¢ ‘x*x/((x-y)*(x-y))-y*y/((x-y)*(x-y))**.

2 subgoals
x : R
y : R
H : Clx_y <> O((

Clary)/ (xh -y) == (xry)/ (xey) ¢

subgoal 2 is:
COlxt —y)R((x+ —y)R(x+ -y)) <> 0¢¢

where the notation /a is just a syntactical abbreviation for the inverse, i.e.
1/a.

The left-hand side term of the equality in the first subgoal is the result returned
by Maple. The second subgoal has been generated by Field. Actually, we can
notice that, applying the algorithm of subsection 3.2, two denominators must
not be equal to 0, that is to say z — y and (z — y)?, even if it is redundant.

5.2. Maple evaluation

As seen previously in subsection 4.1, we can also perform only pure Maple com-
putations thanks to the command Eval...in. These computations do not need
to be proved and there is no guarantee that the results are correct but it is not
necessary to generate side conditions because the consistency of the system is
not endangered in any way. In this case, we just want to use Coq as a calculator
with the help of Maple.
For example, let us consider the computation of the following characteristic
polynomial:
—-1—=x 4 2
-5 T—x )
7 -6 —-6—=x

We define the characteristic polynomial, we call carl, by expanding the de-
terminant w.r.t. the first column:

Coq < Definition carl [x:R] := Eval Factor in



D. Delahaye & M. Mayero: A Maple mode for Coq 20

Coq < ““(-1-x)*((7-x)*(-6-x)+30)+5* (4* (-6-x)+12)+
Coq < T*(20-2%(7-x))“¢.
carl is defined

As we have factorized (with Factor) the previous development, we have a
definition carl which can be directly used to build the corresponding diagonal
matrix:

Coq < Print carl.
carl = [x:R]¢¢ —(x+ -1)*(x+ -2)*(x+3) ‘¢
: R->R

We can perform other computations, in exactly the same way, with the other
Maple functions that have been imported.

6. Conclusion
6.1. Summary

In this paper, several goals have been achieved:

e We have emphasized the paradigm computation/proof, which appears, for
example, in the opposition CAS/DS. In particular, it is apparent that no
concrete system (not only formalisms), which could handle both computa-
tion and deduction in a clean way, has been ever designed.

e In the context of the Coq proof assistant, we have presented the tactic
Field, which can automatically prove the equalities over fields. Regarding
the implementation, this tactic has been realized in a reflexive way, which
ensures both efficiency and certification.

e We have described a very light interface between Coq and Maple, which
allows us to perform Maple computations in Coq. These can be pure com-
putations, which do not require any validation, or computations used during
proofs, which are then automatically certified using the tactic Field.

e We have provided some examples of use (for each new Coq computation
based on a Maple function) with either pure computations (Eval...in) or
computations used during proofs (usual tactic call), which may generate
side conditions arising from the application of the tactic Field.

6.2. Related work

The idea of making CASs and DSs interact has been also explored by some
other authors. A study of this interaction can be found in [4] where, as seen in
section 2, several approaches (believing, skeptical and autarkic) are discussed.
This is a very general characterization of the communication of mathematical
contents between CASs and DSs so that any concrete interface between a CAS
and DS should, a priori, fall into the scope of one of these approaches.
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Other approaches, which differ from that put forward in this paper, consist
in providing CAS users with an interface with a DS to verify side conditions.
For example, in [1], the idea is to track the conditions, which are implicit in the
CAS, but which can make the result go wrong if they are ignored. In this case,
the CAS is Maple and the DS is PVS [19]. This view is quite different because it
is dedicated to CAS users and there is a graphic interface which is used to build
some proofs interactively without interacting directly with PVS. Moreover, the
PVS proofs must be completed manually (no automation is provided for a specific
Computer Algebra domain). In a similar way, another work [10] aims at using
the automated theorem prover Otter to discard trivial conjectures generated by
the HR theory generation tool [9] about Maple functions. Once these conjectures
proved, Otter leaves the interesting conjectures, which cannot be easily proved.

In more closely related approaches, the CAS is devoted to help a DS. For
instance, in [2|, Maple is used to extend the power of rewriting of the Isabelle
theorem prover [20]. No proof obligation is generated and according to [4], the
interface is based on a believing principle (i.e., each rewriting using a Maple
computation is set as an axiom; obviously, this is managed by the Isabelle sim-
plifier at the meta-logic level and this is quite transparent for the user). Another
example is [16] consisting in an interface between HOL [14] and Maple, where
Maple is supposed to help HOL users to perform certain computations. This tool
is mainly dedicated to the domain of real numbers and Maple is called with the
two methods SIMPLIFY/FACTORIZE. The results returned by Maple are proved
in HOL (as mentioned in the title of the paper, this is a skeptical approach)
but not systematically so. In contrast to our approach, the imported functions
are not embedded in specific HOL tactics, which call Maple for computations
and prove the correctness of these computations automatically. In fact, the user
calls the Maple functions in HOL and, if he/she wants to use the results of these
computations in proofs, he/she has to prove their correctness either manually or
automatically (if there is a corresponding tactic). Finally, in the idea of integrat-
ing Computer Algebra into Proof Planning, [23] presents a concrete implemen-
tation where Maple is used to enhance the computational power of the (2mega
system [25]. The computations are checked by means of an external tool, which
provide protocol information to aid the verification in {2mega. This external tool
deals essentially with verifications involving arithmetic and for other kind of
verifications, it must be modified by integrating an appropriate algorithm.

6.3. Future work

An extension of this work could be to deal with other kinds of computations such
as limits, derivatives, etc. (these notions have already been formalized in Coq).
With this interface, these computations can already be quite easily imported
into Coq and if we also want to deal with them in proofs, it is always possible to
prove their correctness, at least manually. However, in the same way as for the
tactic Field, the idea would be to also develop the corresponding automation.
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For example, if we denote f’, the derivative of f, we would like to provide a new
tactic which can automatically prove in Coq that f’ is the derivative of f, for
some specific forms of f, precisely as is done for algebraic expressions over a field
with the tactic Field.

Another application of this interface could be to use Maple to compute poly-
nomial ged’s. Currently, we are developing a decision procedure for first order
formulae over algebraic closed fields based on a method of quantifier elimination,
and as such methods require many ged computations, we plan to use Maple to
do so. The correctness proofs will also be automated using the tactic Field and
Bezout’s relation (the coefficients will be given by Maple). Once realized, a large
part of this procedure could be also reused to deal with real closed fields. It is
particularly interesting to finalize this work because it will mean that CASs can
be used in DSs not only to carried out some computations but also to enhance
the automation of such systems.

Finally, we would like to use a more general language to express the output
data coming from Coq. The idea would be to interface Coq with other CASs.
Currently, the data produced by the interface are quite ad hoc and can only be
parsed by Maple. A good choice could be to adopt languages like OpenMath |[7]
or OMDoc [17], which seem to be emerging standards and already have bindings
with many existing CASs.

A. A complete example: quadratic forms

In this example, we propose to show the equality between two quadratic forms
where the right-hand side form is expressed in such a way that we can compute
the rank of the quadratic form trivially (i.e. a linear combination of squares of
independent linear forms). To do so, we use Gauss’s algorithm? on the left-hand
side quadratic form to get the right-hand side form. Actually, we could rather
expand and reduce the right-hand side to get the left-hand side expression, but
we suppose that we are in the situation where we try to compute the rank of
the left-hand side quadratic form (which is usually the case). The equality we
consider is the following:

y+z., 3 9
+—-(y—=z
5 ) T =2
After some simple algebraic modifications (associativity and commutativity),

we have to prove (the lemma has been named quadratic):

Py -y —yzr—zx+ 2= (z —

quadratic <
1 subgoal

"In Coq and some other proof assistants based on the Curry-Howard isomorphism, a typical
proof style can be to use an algorithm to guide a proof. Afterwards, a program implementing
the given algorithm can be automatically extracted from this proof.
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x : R
y : R
z : R

¢ XRX-XKY-ZXXTYRY-yRZtzZ¥Z ==

(x-(y+z) /2) *(x- (y+2) /2) +3/4* (y-z) *(y-z) * ¢

The first step consists in partially factorizing z2—zy—zz into (z 5

quadratic < Replace °¢‘x*x-x*y-z*x‘‘ with

quadratic < CO(x-(y+2) /2) * (x- (y+z) /2) - (y+z) * (y+z) /4° ¢
2 subgoals

X : R
y : R
z : R

CC(x-(y+2) /2)* (x- (y+2) /2) - (y+z) * (y+2z) /4+y*y-y*z+z*z ==
(x-(y+z) /2) *(x- (y+2) /2) +3/4* (y-z) *(y-z) * ¢

subgoal 2 is:
C(x-(y+z) /2) * (x- (y+2) /2) - (y+2) * (y+2) /4 == x*x-X*y-2%X‘¢

__QiE)Q

23

(y+2)*

4

The second goal has been generated by the tactic Replace. To prove this goal,
we use the new tactic Simplify, coming from Maple, to simplify the left-hand
side term and to get the right-hand side term. The idea is to conclude using
the tactic Reflexivity which applies the reflexivity property of the equality.
As Simplify calls the tactic Field, another subgoal is also generated, i.e. the
side condition that 2 x (2 x 4) # 0. This condition is simply proved by the
tactic DiscrR which deals with equalities and inequalities over reals involving

constants:

quadratic < 2:Simplify ©¢(x-(y+z)/2)*(x-(y+z)/2)-
quadratic < (y+z)*x(y+z) /4¢¢;

quadratic <  [Unfold Rminus;Rewrite (Rmult_sym z x);
quadratic < Reflexivity |DiscrR].

1 subgoal

X : R
y : R
z : R

CC(x-(y+z) /2) % (x- (y+2) /2) - (y+2z) * (y+2z) /4+y*y-y*z+zkz ==
(x-(y+2) /2) * (x- (y+2) /2) +3/4* (y-z) *(y-2z) ¢ ¢

where Unfold Rminus replaces the binary minus with the unary minus (in
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the right-hand side part) and Rewrite (Rmult_sym z x) commutates z and x
(also in the right-hand side part).

After some associativity manipulations, we can perform a full distribution in
—@ +y? — yz + 2% thanks to the tactic Expand (the side condition 4 x 2 # (

is generated and proved by DiscrR):

quadratic < Expand ‘-((y+z)*(y+z)/4)+y*y-y*z+zxz‘‘;
quadratic < [Idtac|DiscrR].

1 subgoal
x : R
y : R
z : R

CC(x-(y+z) /2) * (x- (y+2) /2) + (3% / 4*y*y+
- (3%/2xy*2z) +3%/4*z*z) ==
(x-(y+2) /2) *(x- (y+2) /2) +3/4* (y-z) *(y-2) ¢

Now, we can factorize to get the last square using Factor (again a side con-
dition, i.e. 4 X 2 # 0 is generated and proved by DiscrR):

quadratic < Factor °‘3%/4xy*y+ -(3%/2%y*z)+3%/4*z*z‘‘;
quadratic < [Idtac|DiscrR].

1 subgoal
x : R
y : R
z : R

CO(x-(y+2) /2) * (- (y+2) /2) +3% /4% (y+ -z) *x(y+ -z) ==
(x-(y+2) /2) *(x- (y+2) /2) +3/4* (y-z) *(y-2) * ¢

Finally, once 3%/4 and y+-z have been respectively transformed into 3/4 and
y-z, we can conclude using the tactic Reflexivity.
The Coq proof script is given in detail below:

Lemma quadratic:(x,y,z:R)
CEXRRHYHY-XKY-YHZ-Z¥X+Z¥Z==
(x-(y+2z) /2) * (x-(y+2) /2) +3/4*(y-2z) * (y-2) ‘ ¢.
Proof.
Intros.
Replace

CExkxtyky-xky-yrz-z*kx+z*z ¢ with

¢ Cx*x-x*y-zkxty*y-y*zt+zkz‘ ¢ ; [Idtac|Ring] .
Replace °‘x*x-x*y-z*x‘‘ with

CC(x-(y+z) /2) * (x- (y+2) /2) - (y+z) * (y+2) /4¢ .
2:8implify ‘‘(x-(y+z)/2)*(x-(y+z)/2) - (y+z)*(y+z) /4¢¢;
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[Unfold Rminus;Rewrite (Rmult_sym z x);Reflexivity
|DiscrR].

Unfold 2 Rminus.
Replace ‘‘(x-(y+z)/2)*(x-(y+z)/2)+

- ((yt+z) * (y+2) /4) +y*y-y*z+z*z‘ ¢ with
CC(x-(y+z) /2) * (x-(y+z) /2)+
(- ((y+z) * (y+z) /4) +y*y-y*z+z*z) ¢ ¢ ; [Idtac|Ring] .

Expand ¢‘-((y+z)*(y+z)/4)+y*y-y*z+z*z‘‘; [Idtac|DiscrR].
Factor ©‘3%/4xyxy+ -(3%/2%y*z)+3%/4*z*xz‘‘; [Idtac|DiscrR].
Fold ¢‘3/4°¢;Fold ‘‘y-z‘.

Reflexivity.
Save.
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